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Abstract
Rootzone soil moisture provides valuable information to guide in-season manage-

ment decisions in rainfed and irrigated agricultural systems. Measuring rootzone soil

moisture usually requires the deployment of a vertical array of sensors, which can be

costly and labor intensive. In this study, we tested the skill of an exponential filter

to estimate rootzone soil moisture conditions from a time series of near-surface soil

moisture observations. Daily soil moisture observations from a sensor at 10-cm depth

were used to predict the soil water content at 30-, 50-, and 70-cm depth, and across

the entire soil profile (0-to-80-cm depth) in four agricultural fields under irrigated

and rainfed conditions. The characteristic time length was the only fitting parameter

of the model, which was optimized for each site based on the Nash–Sutcliffe (NS)

score. Across the four sites, the mean NS score at individual soil layers ranged from

−0.64 to 0.73, but the NS score at the profile level ranged between 0.29 and 0.84.

Predictions of soil water storage at the profile level based on near-surface soil mois-

ture and the exponential filter resulted in average RMSE of 11 mm across the four

locations. Our study shows that in agricultural fields the exponential filter performs

better when considering the entire soil profile rather than individual soil layers.

1 INTRODUCTION

Rootzone soil water storage is a decisive variable in irriga-

tion scheduling (Hassanli et al., 2009; Irmak et al., 2012;

Spencer et al., 2019) and a major factor controlling crop pro-

duction in rainfed agricultural systems, particularly in semi-

arid and subhumid areas (Falkenmark et al., 2001). Thus,

accurate monitoring of rootzone soil moisture has the poten-

tial to reduce the amount of irrigation during the growing sea-

son, increase crop water use efficiency by improving the tim-

ing and amount of irrigation events, and increase crop yields

or increase farm profits by making better in-season manage-

ment decisions (Pereira, 2017). For instance, in corn (Zea

Abbreviations: EF, exponential filter; MBE, mean bias error; NS,

Nash–Sutcliffe.
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mays L.) fields located across Nebraska, soil moisture-based

irrigation scheduling resulted in 33% less irrigation applica-

tion relative to the farmer management practice (Irmak et al.,

2012). Similarly, a multiyear study in the Mississippi River

Valley found that irrigation scheduling based on soil moisture

sensors was one of the key factors enabling a 39% reduction in

irrigation water use while still allowing a grain yield increase

of ∼3% relative to yields using conventional irrigation prac-

tices in the region (Spencer et al., 2019).

A common practice to quantify rootzone soil water storage

in agricultural fields is to use point-level soil moisture sen-

sors based on electromagnetic principles. These types of sen-

sors are one of the predominant soil moisture sensing tech-

nologies for both research-grade and consumer-grade sensors

that typically offer relatively accurate (∼0.03 m3 m−3) mea-

surements of soil water storage (Cosh et al., 2016), require
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minimum sensor maintenance, and can be easily integrated

with data logging and telemetry systems for near-real time soil

moisture monitoring (Adla et al., 2020; Dobriyal et al., 2012).

However, two important restrictions of traditional point-level

sensors (i.e., two- and three-pronged sensors) are the reduced

support volume (typically <5,000 cm3) and the need for soil

excavation or soil coring to install multiple sensors along the

rootzone of common agricultural crops, which can become

laborious and impractical for researchers and producers try-

ing to represent areas of the field with different soils or topo-

graphic conditions. Even though new commercially available

mult-idepth soil moisture sensors have alleviated the labori-

ous installation of traditional pronged sensors and can better

represent profile dynamics with a single instrument, multi-

depth sensors can be substantially more expensive and do

not necessarily offer an advantage over pronged sensors in

terms of better characterizing the field horizontal soil mois-

ture spatial variability. However, with the advent of low-power

wide-area networks and the development of more affordable

soil moisture sensors, a cost-effective solution to increase

the horizontal spatial coverage and reveal the spatiotempo-

ral structure of soil moisture of agricultural fields could be

achieved by deploying a spatially distributed wireless sensor

network (Bogena et al., 2010). Because of the usually higher

soil moisture spatial variability of shallow soil layers com-

pared with deeper layers of the soil profile (Mahmood et al.,

2012), field-scale wireless sensor networks could capture the

most prominent changes in soil moisture conditions near the

soil surface due to wetting and drying cycles and rely on

a model to infer the soil moisture conditions at deeper soil

layers.

Multiple filtering techniques have been successfully used

to depth-scale surface soil moisture observations such as

the exponential filter (EF) (Wagner et al., 1999), maximum

entropy model (Al-Hamdan & Cruise, 2010), and wavelet

analysis (Grinsted et al., 2004). In particular, the EF has

received particular interest from the remote sensing commu-

nity to estimate profile-level soil moisture conditions from

shallow (i.e., 0–5 cm) measurements of soil water content

from dedicated satellite missions such as the Soil Moisture

and Ocean Salinity satellite (Ford et al., 2014). The EF is

attractive because of the small number of parameters and the

possibility to account for intermittently available surface soil

moisture observations (Albergel et al., 2008; Mishra et al.,

2020). For example, Ceballos et al. (2005) using the EF found

a strong significant correlation (r2 = .75) between rootzone

(0-to-100-cm depth) soil moisture derived from European

Remote Sensing Satellite scatterometer retrievals and in situ

soil moisture observations in the Duero basin in Spain. Sim-

ilarly, Peterson et al. (2016) working on a 25-ha grazing pas-

ture in Canada concluded that the EF has the greatest potential

to estimate rootzone soil moisture derived from near-surface

soil moisture estimated from cosmic-ray neutron observations

Core Ideas
∙ An exponential filter was used to estimate rootzone

soil moisture from near-surface sensors.

∙ The experiment was conducted in four agricultural

fields under rainfed and irrigated conditions.

∙ Predictions with the exponential filter were most

accurate at the profile level.

∙ The performance of the exponential filter seems to

be affected by changes in crop sequence.

when compared with time-stable monitoring locations and

representative landscape units. From the hydrological point

of view, several studies have shown that rootzone soil mois-

ture can be accurately predicted using near-surface (i.e., 5 and

10 cm) soil moisture observations using in situ soil moisture

observations from mesoscale environmental monitoring net-

works (Ford et al., 2014; Wang et al., 2017).

Although substantial research has been reported using the

EF to infer rootzone soil moisture from remote sensing soil

moisture products and from in situ soil moisture observa-

tions in landscapes dominated by natural grassland vegetation,

there is a gap in the scientific literature about using the EF to

estimate rootzone soil moisture from near-surface in situ soil

observations in agricultural production fields. We hypothesize

that a single shallow soil moisture sensor coupled with the EF

will result in rootzone soil moisture estimates that are com-

parable to a denser array of vertically installed sensors across

the soil profile. The objective of this study was to investigate

the accuracy of an EF coupled with daily in situ observations

of surface soil moisture to estimate daily rootzone soil water

storage.

2 MATERIALS AND METHODS

2.1 Sites and datasets

Soil moisture observations were collected in three differ-

ent agricultural fields in central Kansas from October 2016

to September 2020 (Table 1). Site A is situated within the

Kansas State University North Agronomy Farm Experiment

Research Station near Manhattan, KS. The cropping sys-

tem of Site A follows a no-till rotation based on winter

wheat (Triticum aestivum L.), double crop soybean [Glycine
max (L.) Merr.], and full season sorghum [Sorghum bicolor
(L.) Moench] under rainfed conditions. Site B is situated

near Hutchinson, KS, and the cropping system consists of a

minimum tillage operation with a full season corn and soy-

beans rotation under a center pivot irrigation. Sites C and D
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T A B L E 1 Site, crop rotation, study period, and soil series and textural class for each soil horizon in the top 80 cm of the soil profile obtained

from the USDA-NRCS Soil Survey Geodatabase

Site Crop sequencea Start date End date N Soil series Horizon Horizon depth Textural classb

d cm

A WW–F–SB 25 Oct. 2016 29 Oct. 2017 370 Kahola Ap 0–20 Silt loam

A 20–61 Silt loam

AC 61–80 Silt loam

B CN 22 June 2018 27 Aug. 2018 67 Avans Ap 0–25 Sandy loam

BA 25–36 Silt Loam

Bt1 36–48 Clay Loam

Bt2 48–76 Loam

C CN–F–CN 26 Apr. 2019 18 Nov. 2020 573 Farnum Ap 0–23 Loam

Bt1 23–64 Loam

Bt2 64–80 Sandy clay loam

D CN–F 24 Apr. 2019 31 Mar. 2020 342 Crete Ap 0–15 Silty clay loam

BA 15–38 Silty clay loam

Bt1 38–64 Silty clay

Bt2 64–80 Silty clay

aWW, winter wheat; SB, soybean; F, fallow; CN, corn.
bSoil textural class for the top horizon in Sites B, C, and D was obtained from disturbed soil samples from the 0-to-15-cm layer and analyzed using the hydrometer method

(Gavlak et al., 2003).

were both situated in an irrigated field with no-till crop rota-

tion near Moundridge, KS, but each site was located in zones

of the field with distinct soil type and topographic conditions.

Site C was located at the bottom slope characterized by the

Farnum series (fine-loamy, mixed, superactive, mesic Pachic

Argiustolls) with loam soils (slopes 1–3%) with presence of

fine gravel in the top soil horizons (Soil Survey Staff, 2020).

Site D was located on the upland area of the field that is char-

acterized by deep and moderately well drained Crete series

(fine, smectitic, mesic Pachic Udertic Argiustolls) with silty

clay loam soils and <1% slopes (Soil Survey Staff, 2020).

Sites C and D were intentionally located in the same field fol-

lowing the results of a previous research study (Rossini et al.,

2021) in the same field that subdivided the field into two dis-

tinct management zones based on soil moisture spatial vari-

ability. Time series ranged from a minimum of 66 d at Site B

to a maximum of 572 d at Site C, spanning multiple phases

of the crop rotation (Table 1). The region encompassing the

three fields has an average annual rainfall of 800 mm, a mean

annual temperature of 13 ˚C, and a mean minimum and max-

imum air temperature between −1 and 27 ˚C.

At each site, we deployed an in situ soil moisture moni-

toring station consisting of a datalogger (CR200X, Campbell

Scientific) equipped with four soil water reflectometers

(CS655, Campbell Scientific). The soil moisture sensors

consist of two 12-cm-long stainless steel rods attached to an

epoxy sensor head. All output variables from the sensor were

collected at hourly intervals and were aggregated at daily

intervals. All raw variables reported by the sensor were saved

including voltage ratio, relative permittivity, temperature,

period average, and electrical conductivity. Electronic com-

ponents were housed into an all-weather enclosure and the

station was powered by a 10-W solar panel. For this study we

assumed an 80-cm soil profile that was divided into four layers

of 20 cm each. Sensors were installed by first creating a trench

and then inserting each sensor horizontally into the undis-

turbed face of the trench at 10-, 30-, 50-, and 70-cm depth

(Supplemental Figure S1). Each sensor depth is assumed to

be located at the center of the layer that it represents (Cosh

et al., 2021). For instance, the sensor deployed at 10-cm

depth represents the soil water content of the 0-to-20-cm soil

layer. The daily profile soil water storage was computed as

follows:

𝑆𝑡 =
4∑
𝑖=1

(
θ𝑖𝑡𝑧

)
(1)

where 𝑆𝑡 is the storage soil moisture (mm) on day t, the θit is
the average volumetric water content of layer i on day t, and

z is the thickness of the soil layers (mm), which in this study

was constant with a value of 200 mm.

All sensor output variables, including soil temperature,

dielectric permittivity, bulk electrical conductivity, and

period average, were recorded at hourly intervals. A custom

sensor calibration equation was developed under laboratory

conditions using columns with packed soil from different

parts of the fields. Known volumetric water content from the

packed columns were used to fit a linear regression model as a
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function of a linear model of the squared root of the dielectric

permittivity measured by the sensor (Ledieu et al., 1986):

θ = −0.0994 + 0.0968
√
𝐾a (2)

where θ (m3 m−3) is the volumetric water content and Ka

(unitless) is the real part of the apparent dielectric permit-

tivity, and the two empirical parameters were obtained by

optimization of the model based on ordinary least squares

by using the lsqcurvefit function in Matlab 2018b (Math-

works). This calibration equation provided a RMSE of

0.028 cm3 cm−3 on the calibration dataset with volumetric

water contents ranging from 0.013 to 0.448 cm3 cm−3.

Although multiple studies have shown the pitfalls of using

calibration equations developed using packed soil columns in

laboratory conditions for field applications (Cosh et al., 2005;

Logsdon, 2009; Ojo et al., 2015), our calibration improved

the sensor accuracy for the soils in the calibration dataset

compared with the factory default calibration that resulted in

RMSE of 0.041 cm3 cm−3. Since the surface soil moisture

observations used as input in the EF were recorded with the

same model of soil moisture sensors as in deeper layers of the

soil profile, it is unlikely that a sensor bias was introduced

in the validation of the filter, other than perhaps the need

for a soil- and depth-specific sensor calibration that was not

accounted for in our study. During the winter time, and a few

times during the growing season, malfunctioning batteries

and solar panels introduced some gaps in the temporal record.

As a result, we only used soil moisture data for growing

seasons and fallow periods with no missing observations. Soil

moisture observations when the soil temperature was <1 ˚C

were removed due to changes in the dielectric permittivity

of frozen soil water (Seyfried & Grant, 2007), and we

replaced these values with a centered moving median filter

(30-d window). A total of 7.5% of the daily soil moisture

observations in the topmost sensor were replaced due to low

temperatures in Site A and <2.5% in the topmost sensors

of Sites C and D. No values were replaced due to the effect

of low temperatures in Site B since the sensors were only

deployed during the spring and summer seasons.

2.2 Exponential filter description

The EF is a statistical filtering approach proposed by Wag-

ner et al. (1999) and later reformulated in a recursive form

by Albergel et al. (2008) with the aim of estimating rootzone

soil moisture from surface soil moisture observations. This

method simplifies the soil water balance using a two-layer

approach, where the flux between these two layers is pro-

portional to the difference in soil moisture content between

the layers. The model assumes a constant pseudo-diffusivity

factor that propagates fluctuations in surface soil moisture in

attenuated form to deeper soil layers. The recursive formula-

tion to retrieve rootzone soil moisture from surface soil mois-

ture observations can be expressed as

SWI𝑚(𝑛) = SWI𝑚(𝑛−1) +𝐾𝑛

[
ms(𝑛) − SWI𝑚(𝑛−1)

]
(3)

where SWI𝑚 is the soil water index in the rootzone, ms𝑛 is

the normalized soil moisture observed in the surface layer, 𝑛

represent the time in days, and 𝐾 is the gain function (range

from 0 to 1) that is computed as

𝐾𝑛 =
𝐾𝑛−1

𝐾𝑛−1 + 𝑒

𝑡𝑛−𝑡𝑛−1
𝑇

(4)

where 𝑡𝑛 − 𝑡𝑛−1 is the difference in days between surface soil

moisture observations (a value of 1 d in our study), and 𝑇 is

an empirical characteristic time length in days and the only

unknown of the model. The parameter 𝑇 is often assumed to

represent soil hydraulic properties and the vertical anisotropy

of the soil profile characterized by different soil texture and

bulk density of the soil horizons that affect the temporal

dynamics of soil moisture within the soil profile (Albergel

et al., 2008; Ceballos et al., 2005). Therefore, the 𝑇 parame-

ter should be calibrated on each individual study site. To opti-

mize the value of 𝑇 parameter (𝑇opt ), SWI𝑚 was computed

using different values of T (1–60 d) (Wang et al., 2017). The

Nash–Sutcliffe (NS) score (Nash & Sutcliffe, 1970) was used

to evaluate the performance of the EF (Albergel et al., 2008;

Ford et al., 2014; Wang et al., 2017). The NS score can range

from −∞ to 1, where a value of 1 corresponds to a perfect

match between predicted and observed data, whereas values

lower than 0 typically represent that the observed mean is a

better predictor than the approximation made using the EF. To

better evaluate the performance of the EF we also computed

the Pearson correlation coefficient (r), RMSE, and mean bias

error (MBE). To obtain ms𝑛′ , the observed volumetric water

content at 10-cm depth was normalized in the range 0 to 1

using the normalize function with the range normalization

method in Matlab. Daily observations of rootzone soil mois-

ture were also normalized to obtain the observed soil water

index SWI(obs). For initialization of the EF we assumed that

SWI𝑚(1) = ms(1) and 𝐾1 = 1 (Albergel et al., 2008).

3 RESULTS AND DISCUSSION

Near-surface (i.e., 10-cm depth) soil moisture observations

were coupled with an EF to estimate soil water dynamics at

individual soil depths (i.e., 30, 50, and 70 cm; Figure 1) and

at the profile level (i.e. 0–80 cm; Figure 2) at four differ-

ent sites across central Kansas from October 2016 to March

2020 (Table 1). Based on the NS score, the EF resulted

in more accurate predictions of soil water dynamics when
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F I G U R E 1 Observed (blue open circles) and predicted (red solid line) soil water index (SWI, unitless) at 30- 50-, and 70-cm depth for the four

study sites in central Kansas. Predictions were generated by combining soil moisture observations from a sensor at 10-cm depth and the exponential

filter

F I G U R E 2 Observed (blue open circles) and predicted (red solid line) soil water storage (mm) for Sites A, B, C, and D in the 0-to-80-cm soil

layer solely using soil moisture information from a sensor at 10-cm depth and the exponential filter

considering the soil moisture dynamics across the entire soil

profile compared with individual soil layers (Table 2). Across

all four sites, the mean NS score at individual soil layers

ranged from−0.64 to 0.73, whereas the NS score at the profile

level was generally higher and more consistent than individual

soil layers with NS scores ranging from 0.29 in Site A to 0.84

in Site D (Table 2). The trend in the NS scores was closely

followed by the trend in RMSE and MBE error metrics. For

instance, the 50- and 70-cm soil depths in Site A, and the

50-cm depth in Site C that resulted in negative NS scores, also

resulted in the three largest RMSE values and the three largest

MBE magnitudes, showing that individual soil layers in the
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T A B L E 2 Optimized characteristic time length parameter (𝑇opt ) for each site depth, Nash–Sutcliffe score (NS), Pearson correlation coefficient

(r), mean bias error (MBE), and rRMSE of the normalized soil water index and the actual soil water storage

Site Depth Topt NS r MBE RMSE RMSE
cm d mm

A 30 12 0.45 .83 −0.09 0.14 2.9

50 26 −0.23 .68 −0.18 0.25 5.1

70 18 −0.64 .77 −0.23 0.27 5

Profile 10 0.29 .84 −0.11 0.15 13.6

B 30 1 0.62 .79 −0.01 0.15 0.9

50 1 0.57 .76 0.01 0.16 2.3

70 1 0.31 .89 0.14 0.17 1.8

Profile 1 0.7 .85 0.02 0.14 4.3

C 30 3 0.13 .73 0.14 0.21 5.4

50 11 −0.45 .64 0.23 0.30 5.9

70 7 0.36 .61 −0.02 0.16 4.6

Profile 2 0.47 .8 0.08 0.14 14.1

D 30 6 0.66 .83 0.03 0.17 4.5

50 6 0.70 .85 −0.02 0.12 3.6

70 9 0.73 .87 −0.03 0.13 2.9

Profile 2 0.84 .92 −0.02 0.10 10.8

middle of the soil profile show a weaker coupling with near-

surface observations compared with considering the entire

soil profile. An incomplete picture of the relationship between

near-surface and deeper soil layers could be reached by solely

looking at the Pearson correlation coefficient, which only cap-

tures the degree of linear association between two variables.

For instance, from our analysis, r values were >.7 in 13 out

of the 16 tested soil depths, highlighting the strong positive

linear relationship between near-surface and deeper soil mois-

ture conditions (Table 2), but this view offers little informa-

tion about systematic biases in model predictions. The pre-

diction in the 70-cm soil layer at Site A is a great example of

how the coefficient of correlation (r = .77) masks a large pre-

diction bias in the EF model (NS = −0.64) as a consequence

of decoupled conditions between near-surface and subsurface

soil moisture conditions (Figure 1). This discrepancy may be

caused by soil layers with different soil texture or due to the

presence of an actively growing vegetation (Calvet & Noilhan,

2000); in our case, an actively growing vegetation likely had

a stronger impact since the soil horizons of Site A have sim-

ilar soil textural classes, although soil hydraulic differences

can still exist between horizons. Different patterns in soil tex-

ture and soil moisture content can also influence crop root

distribution and root activity, further contributing to decou-

pled dynamics between surface conditions and rootzone con-

ditions. Our results agree well with those of Ford et al. (2014),

who conclude that the EF has a diminished accuracy in soil

with heterogeneous properties and during times of soil mois-

ture recharge and utilization.

Further inspection of model errors across different phases

of the crop rotation revealed that low errors between predicted

and observed SWI were mainly associated with fallow peri-

ods (e.g., Sites C and D) that often promote profile soil water

recharge. Soil moisture recharge periods increase the coupling

strength between surface observations and deeper soil layers

(Mahmood et al., 2012), increasing the prediction accuracy of

the EF (Ford et al., 2014). On the other hand, during periods

of active crop growth, the predicted profile SWI showed the

largest errors (e.g., Sites A and C at 50-cm depth). A poten-

tial source of error could be attributed to the transient patterns

of root water uptake in intermediate soil layers that may not

be captured by the sensor near the soil surface and by a sin-

gle fitting parameter in the EF model that represents both the

growing season and the fallow season coupling between near-

surface and deeper soil layers. For instance, Sites A and C

spanned two growing seasons with a fallow period between

the growing seasons that likely affected the ability of the EF

to capture the fluctuations in soil moisture conditions with

only one degree of freedom (i.e., parameter T). In Site A, this

lack of agreement between observed and predicted soil mois-

ture could also be attributed to the presence of winter wheat

and soybeans that likely resulted in a differential root water

uptake that may not have been evident in the near-surface soil

moisture dynamics, hence the difference was not captured by

the EF. Consequently, NS scores values at Site A in 50- and

70-cm layers reached negative NS scores of −0.23 and −0.64

(Table 2), meaning that the average soil moisture was a better

predictor than the model. This limitation at 50 cm could be
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attributed to active root water uptake coupled with temporal

delays for soil moisture redistribution between the soil surface

and the deeper layers of the soil profile (Weaver & Darland,

1949). Negative NS scores at intermediate soil depths have

also been reported by Wang et al. (2017) under grassland veg-

etation across stations of the Soil Climate Analysis Network.

On the contrary, Sites B and D spanned periods with a sin-

gle crop and had higher average NS scores of 0.39 and 0.79,

respectively.

Our results suggest that the EF may fail to capture changes

in the rootzone soil moisture related to changes in the land

cover. This deficiency could be attributed to the fact that

surface soil moisture dynamics at 10-cm depth and the

rootzone soil moisture dynamics in the 20-to-80-cm depth

followed different patterns of root water uptake along the

different phases of the crop rotation, which can directly affect

the performance of the filter (Albergel et al., 2008; Ford et al.,

2014; Wang et al., 2017). To improve model performance,

a time-dependent T parameter may allow the EF model to

better account for the transient patterns in root water uptake

across the soil profile. Previous studies using the EF have

primarily involved in situ soil moisture observations from

sparse networks under natural grassland vegetation, which

likely exhibit a more stable relationship between near-surface

and subsurface soil moisture dynamics than agricultural

fields with changing crops and fallow periods. Under natural

grassland conditions, a single calibrated T parameter seems

to capture the soil hydraulic properties and the seasonal

changes in vegetation, while in agricultural fields the differ-

ent phases of the crop rotation and the associated soil water

extraction patterns seem to affect the ability of the EF to

predict rootzone soil moisture dynamics in terms of the NS

score. The parameter 𝑇 was optimized for each site based

on the highest NS score (Table 2). Average values of 𝑇opt
ranged from 1 d in Site B to 26 d in Site A, with a clear

variation across sites and depths matching previous findings

by (Albergel et al., 2008). Smaller values of 𝑇opt were

observed in Site B, which is likely attributed to the presence

of sandy loam soils with large hydraulic conductivity and

low water holding capacity, thus enabling a rapid soil water

redistribution across the soil profile. Similar findings have

been observed by Wang et al. (2017) while working with in

situ soil moisture information from the Nebraska Mesonet, in

which the magnitude of 𝑇opt was negatively correlated to sand

fraction.

In terms of millimeters of soil water storage, predictions at

individual soil layers (i.e., 30, 50, and 70-cm depth) based on

near-surface soil moisture resulted in ≤5 mm in 9 out of the 12

soil depths across all sites and between 4.3 mm (Site B) and

14.1 mm (Site C) when considering the entire profile (Table 2,

Figure 2). Considering the average RMSE of 11 mm at the

profile level across the four study sites, using near-surface

surface soil moisture sensors coupled with the EF seems a

F I G U R E 3 Sensitivity analysis of the Nash–Sutcliffe score and

the RMSE in terms of soil water storage for the entire soil profile

(0–80 cm) for a range of characteristic time length T. Vertical dashed

line denotes the average of optimized T (Topt) at the profile level for all

sites

suitable alternative for guiding irrigation scheduling, but more

research is required in cropland environments to better under-

stand the impact of soil layering and the vertical patterns in

root water uptake on the parameters of the EF during the dif-

ferent phases of the crop rotation.

In order to assess the sensitivity of the NS score and the

RMSE in the predicted soil water storage as a function of the

characteristic time length parameter T, we conducted a sim-

ple sensitivity analysis by ranging T from 1 to 40 d only using

data at the profile level (0–80 cm; Figure 3). Overall, the NS

tended to decreased with increasing T values in all four sites,

particularly in the range of 10–40 d. At the profile level, the

NS score was most sensitive to T at Site B, which is char-

acterized by sandy loam soils that can exhibit rapid changes

in soil moisture conditions within a short period of time. In

fact, the rapid decrease in the NS score with increasing val-

ues of T suggests that for Site B the Topt could have been even

lower than a single day if we had considered hourly time steps

in our analysis. As expected, the error in the predicted pro-

file level soil water storage increased with increasing char-

acteristic time length. However, the RMSE in the predicted

soil water storage was rather insensitive to the characteristic

time length, with Site D exhibiting the largest fluctuation of

∼5 mm between T = 2 d and T = 40 d. Using the average of

Topt (i.e., T = 4 d) as a single value for the entire study period

would have resulted in RMSE < 15 mm for all sites, which is
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encouraging considering the range of soil textural classes and

crop sequences in our study.

4 CONCLUSION

The proposed method of estimating rootzone soil moisture

by only deploying a near-surface sensor coupled with an

EF presents clear practical advantages over excavating and

deploying multiple sensors along the soil profile of large agri-

cultural fields. Predictions using the EF resulted most accurate

when considering the full soil profile (i.e., 0-to-80-cm depth),

followed by predictions at depths immediately below the sen-

sor at 10-cm depth (i.e., 30-cm layer). The timing and vertical

distribution of root water uptake due to actively growing crops

likely caused a decoupling between surface and subsurface

soil water dynamics that was not captured by the EF model

using a single time characteristic length parameter. Future

studies using the EF in agricultural fields conditions should

explore the separate effect of soil hydraulic properties and

crop sequence. One improvement in the EF that could better

capture the effects of crop sequence is the implementation of a

time-dependent characteristic time length parameter. Another

possible alternative would be to decouple the soil hydraulic

and crop sequence effects using two constant and independent

T parameters combined in the computation of the gain func-

tion (Equation 4). Modifications of this type would require

supporting evidence and validation with in situ soil moisture

observations along the rootzone of agricultural crops obtained

via soil sampling, dense profile sensor arrays, or multi-depth

sensors, and would also require caution to preserve the level

of parsimony of the filter. However, the sensitivity analysis

revealed that at the profile level the NS score tends to be more

sensitive than the RMSE in predicted soil water storage, which

provides supporting evidence that the decision of using a con-

stant T parameter across multiple soils and crop sequences

may be sufficient for some agricultural applications. Overall,

the EF showed promising potential to extend near-surface soil

moisture conditions to estimate profile-level soil water stor-

age in cropland fields that can be used for guiding in-season

management decisions and irrigation scheduling.
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