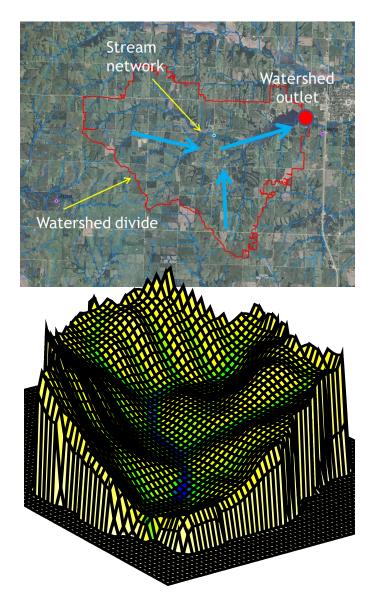


What is a Watershed? Understanding Surface Runoff. Controlling Erosion and Sediment.

Aleksey Sheshukov

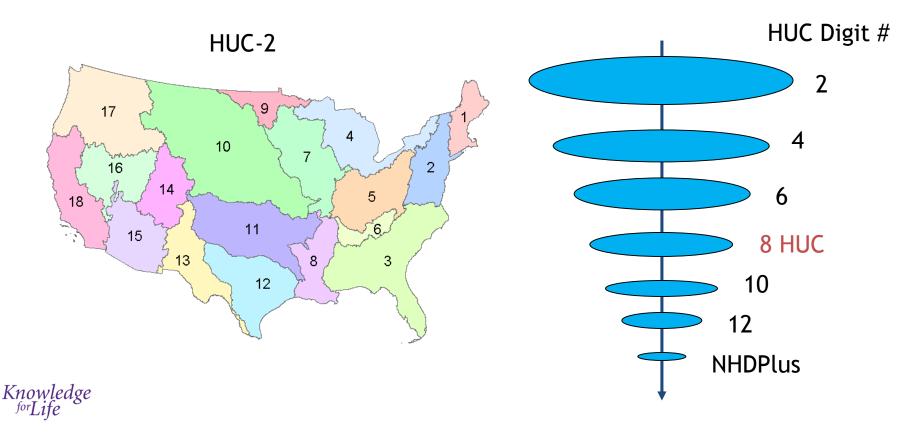
Assistant Professor and Water-Quality Specialist Biological & Agricultural Engineering <u>ashesh@ksu.edu</u>, (785)-532-5418

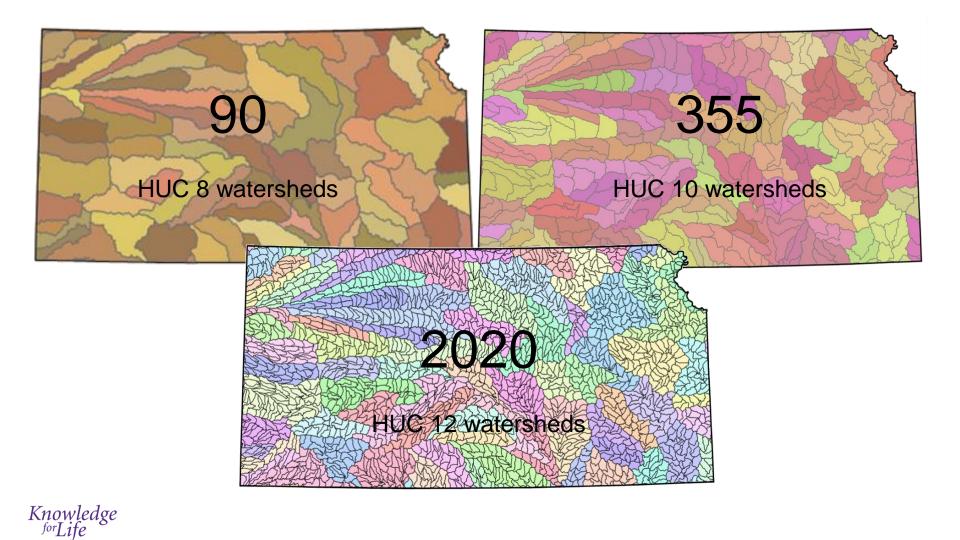
<u>http://www.kcare.k-state.edu</u> <u>http://www.bae.ksu.edu/watershed/extension/training/</u> <u>http://erosion.ksu.edu</u>


WHAT IS A WATERSHED? HOW MANY WATERSHEDS IN KANSAS? HOW TO DEFINE A WATERSHED?

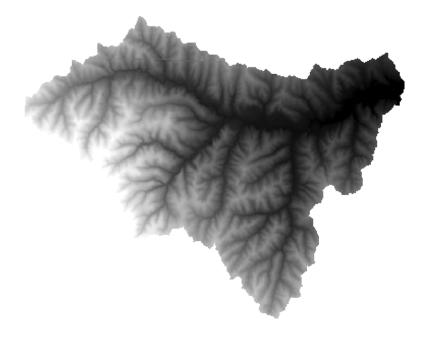
Watershed Terminology

- A watershed refers to an area of land that drains to a common water body such as a lake or a stream
- Watershed characteristics:
 - Watershed divide
 - Stream network
 - Watershed outlet
 - Subwatersheds

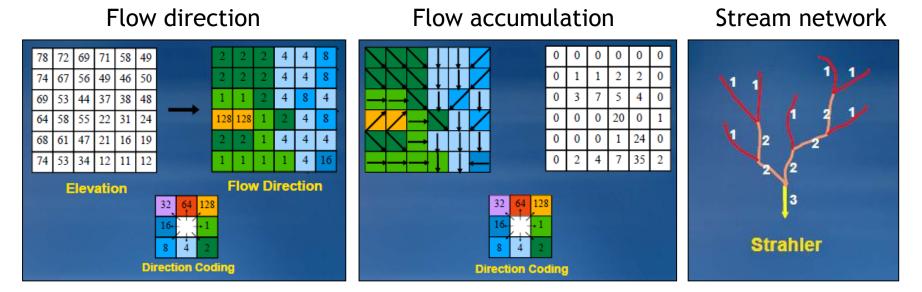


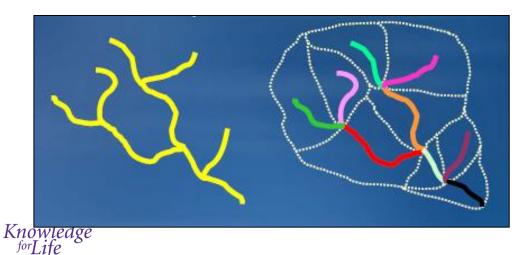

Watershed Hierarchy

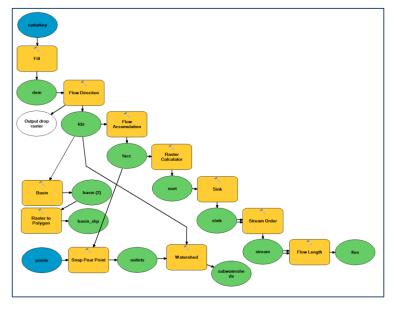
- National Program by USGS and USDA-NRCS
- Hydrologic Unit Code, or HUC, is used to identify specific watersheds at different scales
- The number of digits in a HUC indicates the relative size of the watershed
- Large watersheds are comprised of smaller or "nested" watersheds


HUCs in Kansas

Watershed Delineation

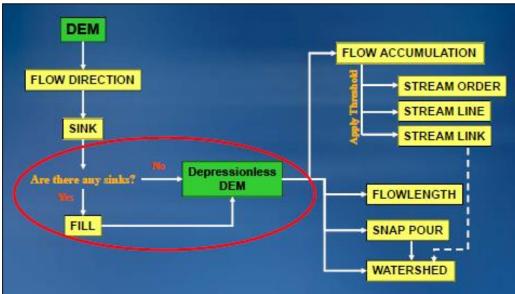

- Process of defining watersheds called *delineation*
- Watersheds can be delineated using GIS
- Digital Elevation Model (DEM) required as input
- Sources of DEM (raster files):
 - USGS DEM, NED, ...
 - <u>http://viewer.nationalmap.gov/viewer/</u>
 - <u>http://www.kansasgis.org</u>
 - <u>http://datagateway.nrcs.usda.gov</u>
 - Compiled from contour maps
 - Interpolated from points and lines
 - Generated photogrammetrically





Watershed Delineation Steps

Watershed system



GIS and Delineation Tools

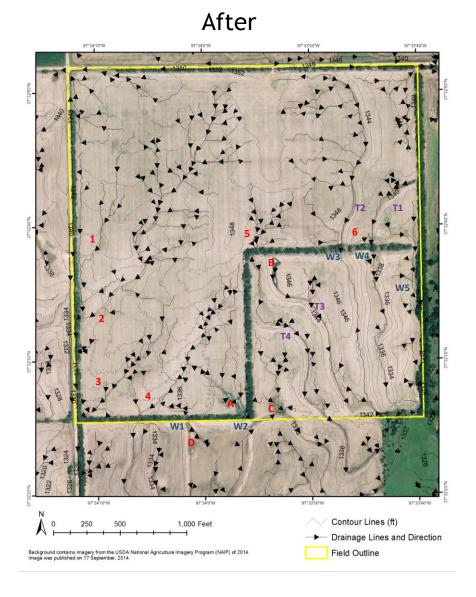
- GIS Tools
 - ArcGIS Spatial Analyst Toolbox
 - ArcGIS ArcHydro Toolbox
 - ArcSWAT
 - BASINS

. . .

– QGIS Delineation Toolset

Examples and applications

- Delineated watershed and catchments
- Created streams
- Identified areas of swale
- Identified potential areas for erosion
- Identified potential terraces and diversions

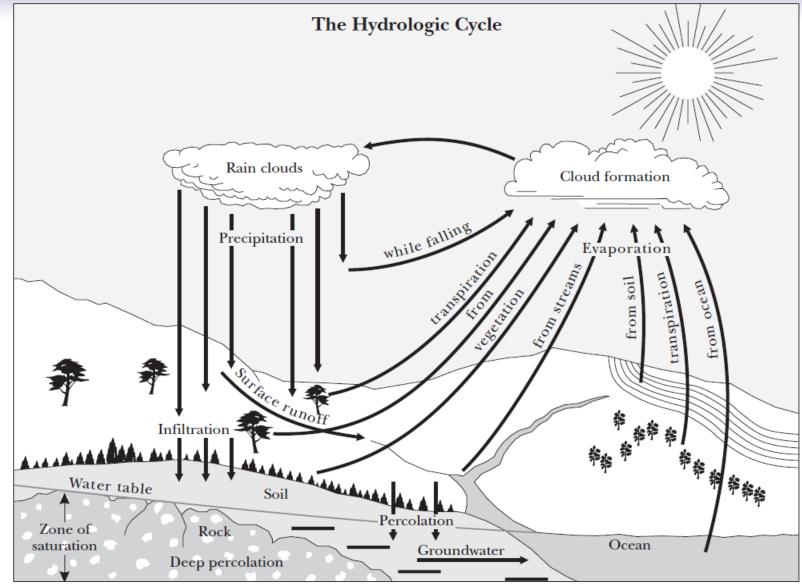


K-STATE Research and Extension Example: Flow Drainage Pathways

K-STATE Research and Extension Example: Flow Drainage Pathways

^{Jor}L1fe

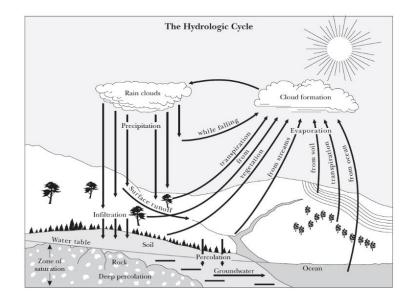
HYDROLOGIC CYCLE. WATER BUDGET. SURFACE RUNOFF.


Distribution of Earth's Waters

Location of storage	Total water (acre-feet)	% of total	% of fresh water	Residence time (years)
Total water on earth	1.033 x 10 ¹⁵	100.0		
Oceans	1.0 x 10 ¹⁵	96.8		
Total Fresh Water	3.314 x 10 ¹³	3.2	100.0	6,977
Ice and Glaciers	2.475 x 10 ¹³		75.4	5,210
Groundwater Deep	4.62 x 10 ¹²		14.0	973
Groundwater Shallow	3.63 x 10 ¹²		11.0	764
Lakes	9.9 x 10 ¹⁰		0.3	21
Biosphere	8.1 x 10 ¹⁰		0.24	17.1
Soil Moisture	1.98 x 10 ¹⁰		0.06	4.2
Atmosphere	1.155 x 10 ¹⁰		0.035	2.4
Rivers	9.9 x 10 ¹⁰		0.003	2.1

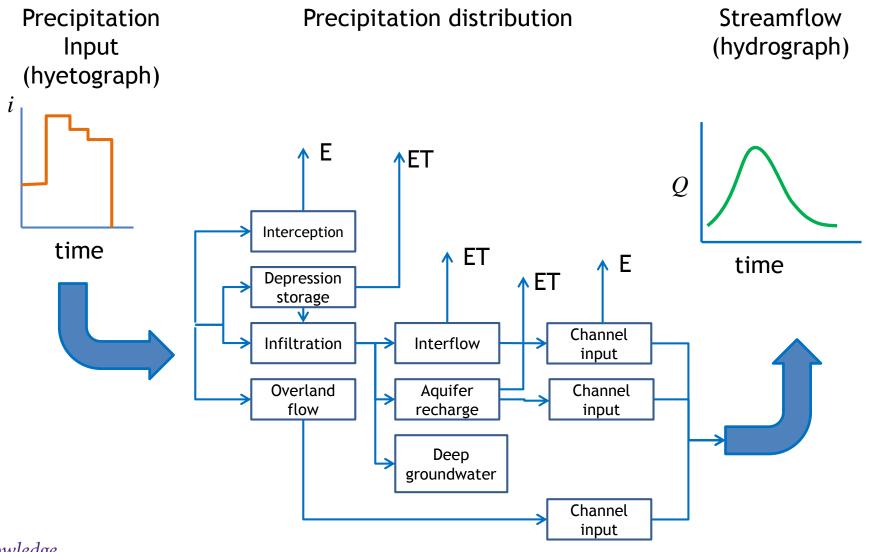
Residence time (yr) = total amount stored (volume) / total annual inflow (volume/yr) Knowledge forLife

The Hydrologic Cycle

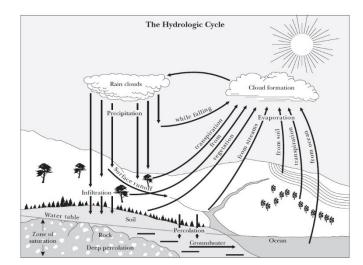

Knowledge ^{for}Life

From: 1955 Yearbook of Agriculture, USDA

Hydrologic Cycle Components


- Precipitation
 - rain, snow, hail, freezing rain, fog, etc...
- Depression storage / Interception
- Infiltration / Interflow
- Percolation / Aquifer recharge
- Overland flow / Surface runoff
- Baseflow / Deep groundwater
- Channel flow

Distribution of Precipitation Input

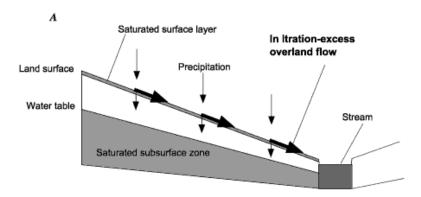


The Water Budget

$PR - RO - GW - ET = \Delta S$

- PR precipitation
- RO surface runoff
- GW groundwater flow
- ET evapotranspiration
- ΔS change in storage

Surface Runoff Types


What causes water to run across the soil rather than into it?

• Infiltration Excess Runoff

search and Extension

Knowledge

- Rainfall rate exceeds soil Infiltration capacity.
 - Areal source of runoff tends to be widespread
 - More common in
 - arid/semi arid regions
 - areas with disturbed soil
 - areas with sparse vegetation
 - Function of storm, soil permeability
- Modeled by CN Method.
- Saturation Excess Runoff
 - Runoff occurs from saturated soil.
 - Source of runoff tends to be local, often lower in the landscape
 - Function of position on landscape, antecedent soil moisture
 - "Partial source-area" hydrology
 - Requires other modeling approach.

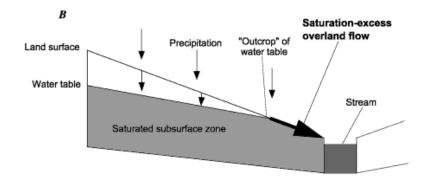


Figure 2. Schematic diagrams illustrating (A) infiltration-excess overland flow and (B) saturation-excess overland flow.

Surface Runoff

Surface Runoff Rate = Rainfall Rate – Storage Rate

Storage (abstractions) are defined as those processes that remove rainfall from surface runoff:

Storage (Rainfall abstraction) rate = Vegetative interception rate + Depressional storage rate + Infiltration rate + Evaporation rate + Other losses

Curve Number (CN) Model


$$RO = \frac{(PR - Ia)^2}{PR - Ia + S}$$

• Where S = 1000/CN - 10

- Value of CN found from table
- No surface storage: CN = 100 or S = 0
- No runoff: CN = 0 or S=infinity
- From experimental data: $I_a = 0.2$ S

CN Method

• Find rainfall amount (in) \rightarrow read up to CN \rightarrow read left to find runoff (in)

Research and Extension

Know

CN Estimation

	COVER					
LAND	TREATMENT	HYDROLOGIC	HYDR	DLOGIC	SOIL	GROUP
USE	OR PRACTICE	CONDITION	Α	В	С	D
fallow	straight row		77	86	91	94
row crops	straight row	poor	72	81	88	91
	straight row	good	67	78	85	89
	contoured	poor	70	79	84	88
	contoured	good	65	75	82	86
	contoured and terraced	poor	66	74	80	82
	contoured and terraced	good	62	71	78	81
small grain	straight row	poor	65	76	84	88
		good	63	75	83	87
	contoured	poor	63	74	82	85
		good	61	73	81	84
	contoured and terraced	poor	61	72	79	82
		good	59	70	78	81
close-seeded	straight row	poor	66	77	85	89
legumes	straight row	good	58	72	81	85
or	contoured	poor	64	75	83	85
rotation	contoured	good	55	69	78	83
meadow	contoured and terraced	poor	63	73	80	83
	contoured and terraced	good	51	67	76	80
pasture or range		poor	68	79	86	89
		fair	49	69	79	84
		good	39	61	74	80
	contoured	poor	47	67	81	88
	contoured	fair	25	59	75	83
	contoured	good	6	35	70	79
meadow		good	- 30	58	71	78
woods		poor	45	66	77	83
		fair	36	60	73	79
		good	25	55	70	77
farmsteads			59	74	82	86
roads (dirt)			72	82	87	89
roads (hard surface)			74	84	90	92

Land Use:

• What is covering the ground?

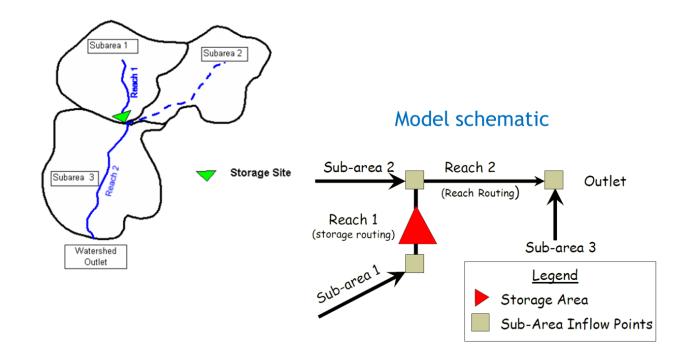
Treatment or Practice:

• How is cover managed?

Hydrologic Condition:

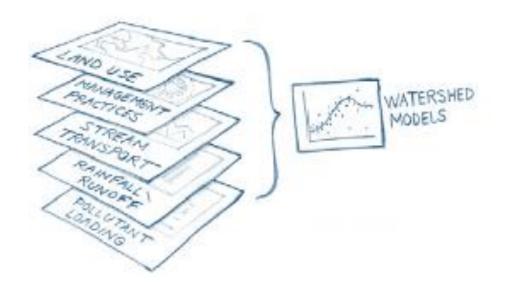
• How well does the land use protect the ground?

<u>Hydrologic Soil Group</u>: How much runoff (infiltration) does the soil allow?


- A: high infiltration (low runoff)
- D: low infiltration (high runoff)

Watershed Models

- Watershed model is a representation of an environmental system through the use of mathematical equations
- Model types
 - Physically-based vs. lumped (mechanistic vs. empirical)
 - Field scale vs watershed scale (small single area vs. multi-area basin)
 - Continuous vs. event-based


Watershed system

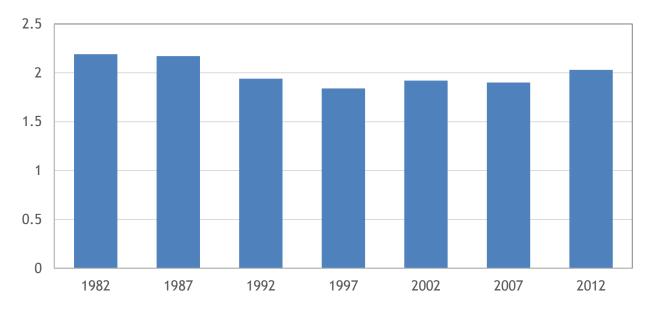
Input to Watershed Models

- Weather data
 - Precipitation, Temperature, Relative humidity, Solar radiation, etc
- Soil type distribution within the watershed
- Topography
- Land Use / Land Cover
- Hydrography / Stream channel network
- Monitoring data
- Land management
- Other items?

Examples and Applications

- Models
 - WinTR-55; TR-20
 - SWAT; APEX; HSPF; AGNPS
 - STEPL; Region-5; L-THIA; RUSLE
- Applications
 - Runoff analysis
 - Watershed assessment
 - Sources of NPS

SOIL EROSION AND TYPES. EROSION PROCESSES. EROSION FACTORS.



What is Soil Erosion?

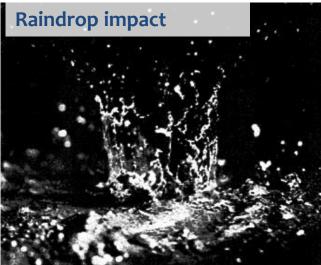
- Soil erosion by water is the process of detachment and transport of soil from land by water flow.
- Forms of soil erosion
- Sheet & rill erosion rates in Kansas (in tons/acre/year)

National Resources Inventory: <u>http://www.nrcs.usda.gov/Internet/NRCS_RCA/reports/nri_eros_ks.html</u>

Splash Erosion

• Splash erosion

- Dislodges soil particles
- Breaks soil particles into smaller pieces that are more-easily transported
- Seals surface, which reduces infiltration


With ne protective cover, mindrops can splash soil particlas up to 3' away. Soil particles and aggregates that have been datached are then transported down the single by monif scalar.

Residue verser cardious the full of raindways and reduces or eleminates splash erosise. Nearlinatural dams are formed that cause poinding of rainoff. Sedenant is deposited in these provis and remains in the field.

Manare application can reach in improved soil aggregation which reduces the splitch effo raindrups and increases infiltration with reduced randf.

USDA NRCS Photo



^{for}Life

Four Major Forms

- Sheet (interrill) erosion
 - Small, nondistinct rills
- Rill erosion
 - Larger rills (flow paths over soil)
- Ephemeral gully erosion
 - Larger channels, removed by tillage
- (Classical) gully erosion
 - Larger channels, <u>not</u> removed by tillage

Ephemeral gully erosion

Other Erosion Forms

Channel erosion

- Streambank
- Channel bed
- Can be significant

Sediment Deposition

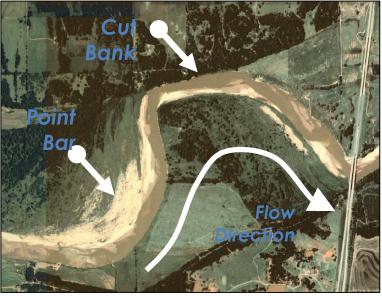
• Where sediment can be deposited?

- Riparian buffers
- Grass waterways
- Channel bed
- Ponds, Wetlands

Sediment Deposition

• Where sediment can be deposited?

- Riparian buffers
- Grass waterways
- Channel bed
- Ponds, Wetlands



Sediment Delivery

Deposition of sediment

- Riparian buffers
- Grass waterways
- Channel bed
- Ponds, Wetlands
- Net delivery rate: (Holland, 1971, Fig. 5)
 - 58% (0.1 mi² watershed) to 22% (10 mi² watershed)
 - Larger watersheds give more opportunity for settling

Riparian buffer

Slow water: Channel deposition

K-STATE Research and Extension

Erosion Factors

Features	Rill erosion	Ephemeral gully erosion	Classical gully erosion	
Tillage	Rills can be erased by tillage; Rills usually do not occur in the same places	Ephemeral gullies are temporary channels; Ephemeral gullies can be obscured by tillage; Ephemeral gullies recur in the same location	Classical gullies cannot be obscured by normal tillage operations	
Size	May be of any size but are smaller than ephemeral gullies	May be of any size but are larger than rills and smaller than permanent gullies	Larger than ephemeral gullies	
Geometry	Cross sections tend to be narrow relative to depth	Cross sections tend to be wide relative to depth; sidewalls frequently are not well defined; headcuts are usually not readily visible and are not prominent because of tillage	Cross sections of many gullies tend to be narrow relative to depth; sidewalls are steep; headcut usually prominent	
Flow pattern	Flow pattern develops as many small disconnected parallel channels ending at ephemeral cropland gullies, terrace channels, or where deposition occurs; Rills are generally uniformly spaced and sized	A dendritic pattern develops along depressional water courses, beginning where overland flow, including rills, converge; Flow patterns may be influenced by tillage, crop rows, terraces, or other unnatural features	A dendritic pattern develops along natural water courses; Non-dendritic patterns may occur in road ditches, terrace, or diversion channels	
Location	Rills occur on smooth side slopes above drainageways	Occur along shallow drainageways upstream from incised channels or gullies	Generally occurs in well-defined drainageways	
Soil removal	Soil is removed in shallow channels but annual tillage causes the soil profile to become thinner over the entire slope	Soil is removed along a narrow flow path, typically to the depth of the tillage layer where the untilled layer is resistant to erosion, or deeper where the untilled layer is less resistant; soil is moved into the voided area from adjacent land by mechanical action (tillage) and rill erosion, damaging an area wider than the eroded channel	Soil may be eroded to depth of the profile and can erode into soft bedrock	

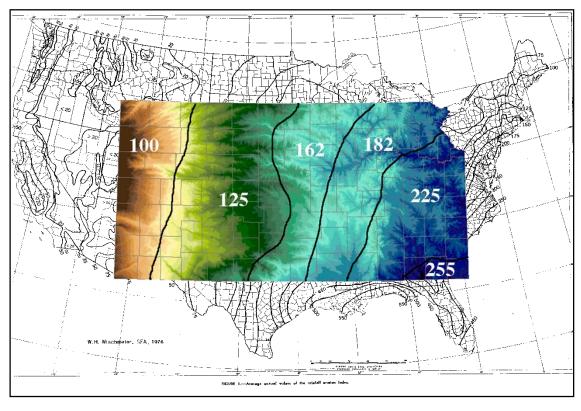
Erosion Factors

- Erosion depends on several factors
 - Storm energy
 - Soil erodibility
 - Topography
 - Land cover
 - Land management

USLE–Universal Soil Loss Eq.

- USLE developed by USDA Soil Conservation Service
 - Published in 1965
 - Based on data collected from 1930s
 - Annual soil loss, A (tons/yr):

$\mathbf{A} = \mathbf{R} \cdot \mathbf{K} \cdot \mathbf{L} \mathbf{S} \cdot \mathbf{C} \cdot \mathbf{P}$


- USLE includes several factors
 - Storm energy R
 - Soil erodibility K
 - Topography LS
 - Land cover C
 - Land management P

Rainfall: USLE–R Factor

- Rainfall depth and intensity pattern controls runoff dynamics during rainfall events.
 - Higher the intensity and larger rainfall depth, more water can flow on the surface and higher potential for soil erosion.
 - The timing of rainfall (spring or winter when soil is bare) can cause more soil movement

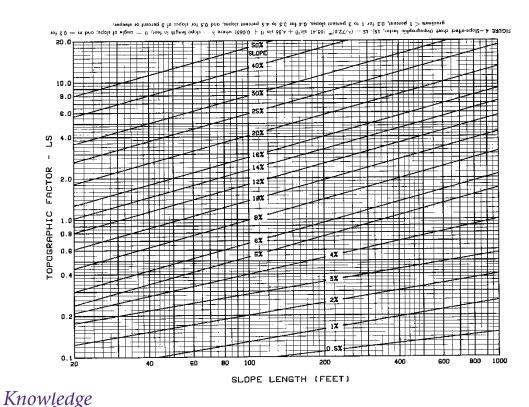
Soil: USLE–K Factor

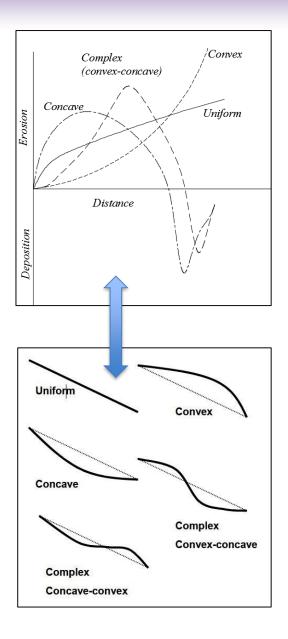
- Soil allows water to drain and controls runoff.
 - More silty soils are less cohesive and produce higher erosion rates.
 - Soil moisture can prevent infiltration and cause higher runoff.
 - Subsurface flow toward gullies makes soils less cohesive.
- USLE-K factor available for every soil type in U.S.
 - Soil Texture, Organic Matter
 - 324 soil types in Kansas

TABLE	1Computed	Κ	values	for	soils	on	erosion
	rese	earc	ch static	ons			

Soil	Source of data	Computed K
Dunkirk silt loam	Geneva, N.Y.	¹ 0.69
Keene silt loam	Zanesville, Ohio	.48
Shelby loam	Bethany, Mo.	.41
Lodi loam	Blacksburg, Va.	.39
Fayette silt loam	LaCrosse, Wis.	1.38
Cecil sandy clay loam	Watkinsville, Ga.	.36
Marshall silt loam	Clarinda, Iowa	.33
Ida silt loam	Castana, Iowa	.33
Mansic clay loam	Hays, Kans.	.32
Hagerstown silty clay loam	State College, Pa.	¹ .31
Austin clay	Temple, Tex.	.29
Mexico silt loam	McCredie, Mo.	.28
Honeoye silt loam	Marcellus, N.Y.	¹ .28
Cecil sandy loam	Clemson, S.C.	¹ .28
Ontario loam	Geneva, N.Y.	¹ .27
Cecil clay loam	Watkinsville, Ga.	.26
Boswell find sandy loam	Tyler, Tex.	.25
Cecil sandy loam	Watkinsville, Ga.	.23
Zaneis fine sandy loam	Guthrie, Okla.	.22
Tifton loamy sand	Tifton, Ga.	.10
Freehold loamy sand	Marlboro, N.J.	.08
Bath flaggy silt loam with surface	Arnot, N.Y.	¹ .05
stones > 2 inches removed		
Albia gravelly loam	Beemerville, N.J.	.03

¹ Evaluated from continuous fallow. All others were computed from rowcrop data.

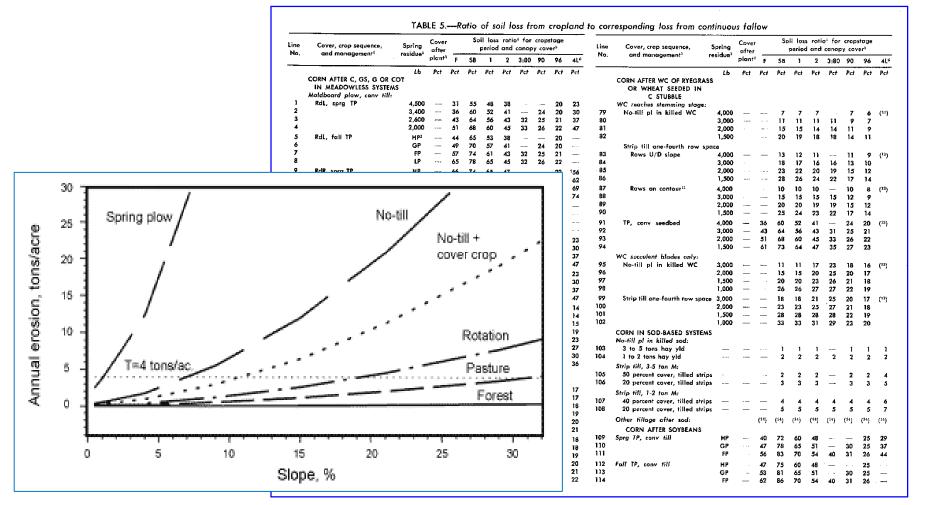

Knowledge ^{for}Life


Topography: USLE–LS Factor

• Slope shape plays an important role in overland flow converging from sheet flow to concentrated flow.

search and Extension

 Slope length and steepness determines areas of soil erosion and soil detachment.



Land Cover: USLE–C Factor

 USLE-C factor is the ratio of soil loss from land cropped under specified conditions to corresponding loss under tilled, continuous fallow conditions.

Research and Extension

• Management decisions about crop rotation and tillage system affect C.

- Management practices that reduce the erosivity of water moving across slopes will reduce soil erosion.
- Contouring, strip-cropping, terraces, and grassed waterways are all examples of erosion control practices used to establish the USLE-P factor.

USLE-P Factor

TABLE 14.—P values, maximum strip widths, and slopelength limits for contour stripcropping

Land slope percent			P values ¹		Charles and date?			
					с	Strip width ²	Maximum length	
							Feet	Feet
1	to	2		0.30	0.45	0.60	130	800
3	to	5		.25	.38	.50	100	600
6	to	8		.25	.38	.50	100	400
9	to	12		.30	.45	.60	80	240
13	to	16		.35	.52	.70	80	160
17	to	20		.40	.60	.80	60	120
21	to	25		.45	.68	.90	50	100

TABLE 15.—P values for contour-farmed terraced fields¹

Land slope	_		Computing sediment yield	
(percent)	Farm p Contour factor ²	Stripcrop factor	Graded channels sod outlets	Steep backslope underground outlets
1 to 2	0.60	0.30	0.12	0.05
3 to 8	.50	.25	.10	.05
9 to 12	.60	.30	.12	.05
13 to 16	.70	.35	.14	.05
17 to 20	.80	.40	.16	.06
21 to 25	.90	.45	.18	.06

¹ Slope length is the horizontal terrace interval. The listed values are for contour farming. No additional contouring factor is used in the computation.

 $^{\rm 2}$ Use these values for control of interterrace erosion within specified soil loss tolerances.

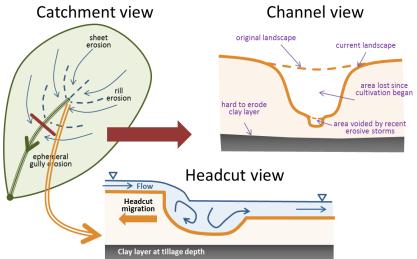
³ These values include entrapment efficiency and are used for control of offsite sediment within limits and for estimating the field's contribution to watershed sediment yield.

Knowledge

USLE–Example

Input

		Rangeland	Cropland
—	Manhattan – <mark>R</mark>	190	190
—	Clay loam soil – <mark>K</mark>	0.21 (4% OM)	<mark>0.25</mark> (2%)
—	500 ft – <mark>LS</mark>	1.2 (5%)	<mark>0.5</mark> (3%)
—	Crop cover – C	0.04	0.30
—	No terraces – P	1.0	1.0


A (tons/yr) = R K LS C P

- Rangeland: $A = 190 \times 0.21 \times 1.2 \times 0.04 \times 1.0 = 1.9 \text{ t/ac}$
 - Construction (C = 1.0) \rightarrow A = 47.9 t/ac !!
- <u>Cropland</u>: $A = 190 \times 0.25 \times 0.5 \times 0.3 \times 1.0 = 7.1 t/ac$
 - Add terraces (P = 0.5) \rightarrow A = 3.5 t/ac (erodes)
 - Add terraces (P = 0.1) \rightarrow A = 0.7 t/ac (*leaves field*)
 - Less slope (S = 2%, LS = 0.35) → A = 5.0 t/ac

Knowledge

Ephemeral Gullies

- **Ephemeral gullies** form in drainageways or where opposing slopes meet
 - Gullies are termed ephemeral because their occurrence is ephemeral, depending on rainfall and runoff conditions, the soil's resistance to erosion, and land use and treatment.
 - Normal farming practices may completely or partially fill gullies with sediment, but occasionally, gullies recur in the same place later in the year.

- Active ephemeral gullies are recognized by headcuts (initiation or nick points), where there is an abrupt change in elevation.
 - The channel below the headcut is formed by plunging flow and soil erosion, and reminds shallow river channels.
 - Secondary nickpoints may be located downstream due to sudden grade change, field management, or crop canopy.
 - Nick points travel upstream as gully system enlarges and expand in response to runoff flow and cover conditions

Knowledge ^{for}Life

earch and Extension

CONSERVATION PRACTICES TO CONTROL SURFACE RUNOFF AND EROSION

BMP Processes

- Reduce sediment availability
 - Amount, timing, placement
- Increase infiltration
 - Reduces runoff
 - Less runoff energy and reduced transport capabilities
- Reduce erosion
 - Reduces sediment yield
- Trap sediment in a structure
 - Detain water, sediment
- Stream processes?

Knowledge

BMPs for Cropland

Runoff/Erosion Control

- Conservation practices
 - (1) No-till or Conservation tillage (residue > 30%)
 - (10) Critical planting area (perennial plants in \uparrow erodible land)
 - (2) Conservation farming (follow contour)
 - (5) Contour strip crop (2+alt. crop)
- Conservation structures ("in-field")
 - (3) Gradient terraces (drain toward waterway)
 - (4) Level terraces (hold water behind terrace)
- Treatment structures ("between field and surface water")
 - (6) Grass waterway (carries field runoff)
 - (7) VFS (between field and water)
 - (8) Constructed wetland (shallow water w/ plants)
 - (9) Sediment-control basin (detains water)

25%

CROP RESIDUES: Conservation tillage (residue > 30%)

50%

WHEAT

75%

90%

25% **50**% 75% 90%

CORN

Knowledge ^{for}Life

Contour Strip Cropping

Gradient terraces/Contour farming Grass waterway (carries field runoff)

Vegetative Filter Strip (or Vegetative Buffer Strip)

Diversion

A diversion is a channel running across a slope that directs water to a safe discharge area.

Sediment basin

ataplay of Sill of the same

and a set of the set o

The state of the local

A temporary pond built on a site to capture eroded soil during rain storms

64000

K-STATE Rese

Rese					
		Soluble Phosphorus	Total Phosphorus	Nitrogen	Suspended Solids
	Conventional tillage				
	Crop rotations	25	25	25	25
	Establish vegetative buffer strips	25	50	35	50
	Conservation tillage farming (>30 percent residue cover following planting)	0	35	15	30
	No-till farming	0	40	25	75
	Contour farming (without terraces)	20	30	20	35
	Terraces with tile outlets	10	30	10	30
	Terraces with grass waterways (with contour farming)	30	30	30	30
	Cover Crops (fall, winter, spring)	40	50	25	40
	Sediment Basin	50	50	30	50
	Wetlands	30	30	25	30
	Best Management Practice for No-till				
	Crop rotations	25	25	25	25
	Establish vegetative buffer strips	25	50	35	50
	Contour farming (without terraces)	20	30	20	20
	Terraces with tile outlets	10	30	10	30
	Terraces with grass waterways (with contour farming)	30	30	30	30
	Cover Crops (fall, winter, spring)				
Kņ	Sediment Basin	50	50	25	50
fo	Wetlands	30	30	25	30

KSRE Resources

- Water Primer
 - MF3021: Part2, Hydrologic Cycle
 - MF3023: Part 4, Surface Water
 - MF3024: Part 5, Water Law
 - MF3210: Part 9, The Kansas Water Budget and Water Footprint
- Water Quality and BMPs
 - MF2572: Water Quality Best Management Practices
 - MF2501: Total Maximum Daily Loads #6: Suspended Solids: A Water Quality Concern for Kansas
 - MF3030: Cheney Lake Watershed: Erosion From Ephemeral Gullies
 - MF2907: Impacts of No-till on Water Quality
 - MF2682: Effects of Conservation Practices on Water Quality: Sediment

Thank You! Questions?

Aleksey Sheshukov

ashesh@ksu.edu

(785)-532-5418

http://www.kcare.k-state.edu

http://www.bae.ksu.edu/watershed/extension/training/

http://erosion.ksu.edu

Knowledge ^{for}Life