Achieving Efficient Landscape/ Turf Irrigation

- Dr. Cathie Lavis: Professor & Extension Specialist clavis@ksu.edu
- Department of Horticulture, and Natural Resources: Kansas State University

Professional Stewards of our water: ask, do you—

- Understand plants, their water use, and soils?
- Develop quality designs, install correctly, and do routine maintenance?
- Understand how much water is being applied during a watering event and then schedule accordingly?
- Update older systems using devices/components that help conserve water?

Ask: what about soil infiltration rate?

Does the contractor--

Understand

- pressure (psi),flow (gpm), velocity (fps)
- -sprinkler precipitation rate (PR)
- -observe site specifics
- -water saving components
- distribution uniformity(DU) and efficiency

What about PSI?

System PSI too high

System psi too low

What about flow?

- How much water is going down per unit of time, precipitation rate (PR)?
- At least use the product catalog to figure PR.

Distribution uniformity (DU)

- How evenly water is applied over an area.
- Equal water on each square foot of soil surface would be 100%
 - the minimum acceptable for turf is ~70-80%
 - the average residential or commercial system is ~50% or less.

Factors Influencing Uniformity

· Pressure

· Wind direction and speed

• Mechanical nature:

Sprinkler type, spacing, rotation speed, flow rate (gpm)

Uniformity & Efficiency

Watering efficiency=good system management

Influencing factors:

- Overspray/runoff
- Zone runtimes
- Broken sprinklers

Proper installation

- Critical for a cost-efficient, easily maintained, water conserving, long-lasting system.
- Too many contractors install without regard to safety, longevity, ease of maintenance & efficiency.
- As-built plans should always be provided to clients.

Watering more than the plants

Improper Sprinkler Installation

SYSTEMS NOT PROPERLY MAINTAINED

Simple adjustments make a big difference.

Typical homeowners do not think about adjusting runtimes for seasonal changes. **Does your** contractor?

MOST PEOPLE DO <u>NOT</u> KNOW HOW MUCH WATER (PR) IS APPLIED DURING AN IRRIGATION EVENT

 Scheduling sprinkler runtimes without knowing the precipitation rate (PR) is like trying to estimate your arrival time without knowing how fast you are traveling.

PR rates are NOT equal

• High: 1.0 in/hr or more

• Medium: 0.5 to 1.0 in/hr

Low:0.5 in/hr or less

Catch-cans or calculate use nozzle performance charts

UPDATE OLDER SYSTEMS AND NEW SYSTEMS USING PRODUCTS NOW AVAILABLE TO HELP CONSERVE WATER

Update equipment

- Climate-Based Irrigation Controllers
- Rain or/ Soil Moisture Sensors
- Low Precipitation Rate Sprinklers

High Application Uniformity Products

Popular Water Savings Upgrades	Cost of Product*	Annual Gallon Savings	Annual Cost Savings	Return on Investment (ROI)
Controller Upgrade	\$400	80,000	\$400	1 year
Rain-Off Sensor	\$120	24,000	\$120	1 year
Ultra-Low Flow Toilet	\$350	14,162	\$70	5 years
High-Efficiency Clothes Washer	\$1,500	8,176	\$40	37 years
High-Efficiency Showerhead & Faucet Aerator	\$50	2,993	\$15	3 years
Faucet Aerators	\$9	1,752	\$9	1 year
High-Efficiency Dishwasher	\$500	1,250	\$6	80 years
*Cost is for residential application and does not include installation cost.				

Check valves prevent low head run-off

Sprinkler drain check valves

Check valves to control low head drainage.

Can save 1000s of gallons/year

Sprinkler pressure regulation

Non-Pressure Regulated

Pressure Regulated

Pressure Regulated Valves

Rain and Weather Sensors

Weather stations and SMART Controllers

Soil-based sensor (SMS)

- Monitor soil moisture level—like driving a car without a gas gauge
- When soil moisture levels reaches a critical low value, irrigation applied

Subsurface Drip vs. Sprays

SSDI

•Spray sprinklers

Inline Drip Wetting Pattern

In Summary—to water well—

- Gain an understanding of plant water use and soil
- Install quality designed systems
- Proper and routine system maintenance
- Update older systems; on new systems use devices to help conserve water
- Employ <u>auditing</u> practices to discover how much water is applied during a watering event, then schedule accordingly

THANK YOU