Virtual workshop series: Water quality and aquatic plant management

Natural Resources PFT

Kansas Center for Agricultural Resources and the Environment (KCARE)

Water quality and aquatic plant management

- Offered as a Professional Development Event in PEARS for county extension agents
- Date/Time: June 16 to June 23, 8:30 am to 9:30 am
- Zoom Meeting ID: 952 6066 1935

Kansas State University is committed to making its services, activities and programs accessible to all participants. If you have special requirements due to a physical, vision, or hearing disability, contact Melissa Harvey, 785-477-4540.

Kansas State University Agricultural Experiment Station and Cooperative Extension Service K-State Research and Extension is an equal opportunity provider and employer.

Schedule

• Day 1: Aquatic plant management in ponds

- Tuesday, 6/16, 8:30-9:30 a.m.
- Presenter: Charlie Lee, Extension Specialist, Department of Animal Sciences and Industry, K-State

• Day 2: Water Contaminants affecting cattle health

- Thursday, 6/18, 8:30-9:30 a.m.
- Presenter: A.J. Tarpoff, Assistant Professor and Extension Beef Veterinarian, Department of Animal Sciences and Industry, K-State

• Day 3: Blue-green algae and its dangers to livestock and pets

- Tuesday, June 23, 8:30-9:30 a.m.
- Presenters: Steve Ensley, College of Veterinary Medicine, Kansas State University; Scott Fritz, Kansas State University Veterinary Diagnostic Laboratory; Jody Holthaus, Extension Agent, Meadowlark District; and Elizabeth Smith, KDHE Bureau of Water

Today's format

- If you haven't already, please mute your microphones.
- Speakers will present for 30-40 minutes
- Panelists will join the discussion at the end
- Please ask questions through the **chat** function (located at the lower part of your screen).
- Although our "end time" is posted for 9:30 a.m., participants are welcome to remain longer if they want to discuss the topic further.
- Please take a moment to participate in the survey.

Speaker

Charlie Lee

Extension Specialist, Department of Animal Sciences and Industry, Kansas State University

Panelists

Brian Rees, County Director, Lyon County Cody Miller, Extension Agent, Phillips-Rooks District

Aquatic Plant Management In Ponds

Charlie Lee Extension Wildlife Specialist Department of Animal Sciences and Industry K-State Research and Extension

Benefits of aquatic vegetation

- Primary producers in pond
- Provide food and/or shelter for fish or other species
- Produce oxygen
- Improve water quality
- Nutrients used by aquatic plants are not available for algae so improves clarity

Problems

- Reduces recreational enjoyment
- Too much shelter for small fish
- May cause fish kills when plants die
- Bad taste and odor
- Increases sedimentation rates

Conditions for Aquatic Plant Growth

Light

- Turbidity: maybe only a few inches of photic zone
- Depth: extremely clear water may have 300 feet of photic zone
- Nutrients- carbon, nitrogen and phosphorus

Water nutrients or sediment nutrients

Weed ID

- You <u>MUST</u> identify the plant in order to manage it!
- Aquatic weed identification and control
 - <u>http://aquaplant.tamu.edu/plant-identification/</u>
 - <u>http://plants.ifas.ufl.edu/plant-directory/aquatic</u> <u>plant-identification/</u>

Plant Identification: Aquatic Weeds

- Algae- simple plants without roots, leaves, stems or flowers.
 - They reproduce by cell division, fragmentation, or by spore formation
- Vascular plants plants having roots, stems, leaves, and flowers.

Submersed, free-floating, rooted floating, emerged plants

Three types:

1. Planktonic algae - essential, cause blooms, shade pond bottom, but can cause fish kills by lowering O_2

2. Filamentous algae - thread-like filaments that form mats on surface of the pond. As algae photosynthesize, oxygen gets trapped in the body causing them to rise to the surface as clumps. Examples:

- Spirogyra bright green and slimy
- Cladophora cotton mat algae, due to texture

- Pitophora – horsehair, coarse

3. Chara – Large green algae that are anchored to the bottom and do not extend above the surface

Planktonic algae: essential, cause blooms, shade pond bottom, but can cause fish kills by lowering O₂

Cyanobacteria or blue green algae

- Probably always present in a pond
- Been around for millions of years. When environmental conditions just right it blooms -7 day life cycle
- Sometimes produces toxins
- Livestock deaths since 1890's
- When you kill the plant, toxins are released throughout the water column

Filamentous algae: Single cells that form long chains and then float. No known direct food value except for invertebrates.

Chara: called muskgrass or skunkweed because of garlic-like odor, often confused with emerged flowering plants, crunchy texture.

Submerged plants (grow mainly below surface and have very soft stems)

- Pondweeds
- Elodea
- Watermilfoil
- Coontail
- Naiads
- Bladderwort

American pondweed

Sago pondweed

Elodea

Southern naiad

Aquaplant

Floating Plants (free floating or rooted with floating leaves)

- Duckweed
- Watermeal
- Water lily
- American lotus

Duckweed or watermeal?

American lotus

Aquaplant

Water lily

Aquaplant

Emergent plants (rooted in water but most of foliage above water)

- Arrowhead
- Cattail
- Water primrose

Arrowhead

Water primrose

State quarantine

Purple loosestrife

What do I do about it?

- Algae control (short term solutions)
 - Chemicals
 - Fish
 - Shading
 - Microbial

- Phosphorus inactivation (alum floc)
- Reduce nutrient run off
- Find alternative water source
- Aeration

Watershed cover

- Rangeland, cropland, suburban
- Waterfowl use
- Good plants for buffers
 - Native grasses- big four plus
 - Gama grass, cordgrass, sandreed,
 - Forbs
 - arrowhead, cattails, sedges, marsh milkweed, water smartweed and bulrushes
- Usually not necessary to plant in basin

surface-withdrawal spillway.

Figure 2. Cross-sectional view of a pond with a bottom-withdrawal spillway.

Aquatic Weed Control

- Treatment may be recommended when aquatic weeds cover more than 25 percent of the pond's surface area.
- Types of control
 - -Physical
 - -Mechanical
 - -Biological
 - -Chemical

Physical control?

- Pond drawdown
- May work for LARGE LAKES
- Need some areas of deep water for fish refuge
- Only draw down in the WINTER time
- Expose bottom for at least ONE MONTH
- Spray exposed weeds when they are green

Mechanical control?

Biological Control?

•Plant-eating fish. Introduced from Asia in 1963. Reaches 60 pounds. Triploid species available for stocking.

Grass Carp as a Biological Control of Aquatic Weeds

- Can be very effective but they are not a cureall.
- May result in turbid water.
- Overstocking can seriously effect sport fish populations.
- Cattails, spatterdock and filamentous algae are eaten last.
- Results are not guaranteed.

Grass Carp Guidelines

- Stock only if pond surface is more than 20 percent covered in vegetation.
- Calculate pond size accurately.
- Total elimination of vegetation occurs at 30 fish (10-12 inches) per acre of vegetation.
- Vegetation control occurs at 15 fish (10-12 inches) per acre of vegetation.

Biological control

- Will fish control HABs?
 - Perhaps
 - Tilapia
 - Stocking rate 25-50/ac adults
 - Digestion efficiency ranged from 58.6 to 78.1% at water temperature of 77°F.
 - Ingestion rate increased with increasing fish weight and water temperature
 - Major problem is they die when water temperature is below 55°F

Chemical Control:

its not without problems!

Considerations prior to treatment to avoid fish kills

- Percent of pond covered
- Water temperature
- Plant maturity
- Time of year
- Chemical mode of action

You must calculate the area and volume of a body of water

Area = length X width Surface area in acres = pond area in square feet/43,560

Volume = average length X average width X average depth

Acre feet = surface area (acres) X average depth

Online calculator https://mdc.mo.gov/property/pond-stream-care/ponds-plant-management/pond-area-estimator

Important Points to Remember

- Match aquatic weed with appropriate herbicide.
- Use only registered herbicides.
- FOLLOW LABEL INSTRUCTIONS.
- Treat evenly.

CUTRINE

- Apply chemical early in the growing season.
- Check water hardness (>40ppm) when using copper.

Sonar SRI

Chemicals

- Sodium percarbonate algae
- Copper algae (powder or liquid)
- Diquat contact herbicide (Reward)
- Endothal contact herbicide (Aquathol)
- Floridone (Sonar) residual herbicide
- Glyphosate (Rodeo) grasses, shoreline
- 2,4-D growth regulator
- Triclopyr brush (Renovate)
- Imazapyr emergent weeds (Habitat)
- Penoxsullam (Galleon) Floating plants
- Aquashade pond water dye part of algae control

Some estimated rates and costs (June 2020)

Herbicide	Rate	Approximate cost
Aquathol	0.3-2.6 gal./ac./ft. of 4.2L	\$42-\$360/ac.ft.
Penoxsulam	0.1-26 oz./ac. ft.	\$2-564/ac.ft.
Diquat	0.25-2 gal/ac./ft. of 2L	\$18-\$150/ac.ft.
2,4-D	1-2.8 gal. surface acre of 47%	\$40-128/surface ac.
Copper compounds	0.6-3.0 gal. chelated copper/ ac.ft.	\$28-\$138/ac.ft.
Fluridone	3.8-7.7 oz. ac./ft.	\$62-\$125/ac.ft.
Glyphosate	4-7.5 pt./surface acre of 5.4L	\$48-\$90/surface ac.
Triclopyr	.7-2.3 gal./surface acre of 44%	\$56-\$184/surface ac.
Sodium carbonate per.	3-170 pounds/ac./ft. of 50G	\$7-\$400/ac.ft.
Imazamox	17-173 oz./surface ac.	\$39-404/surface ac.
Imazapyr	6-64 oz./surface acre of 4lb/gal	\$37-\$400/surface ac.
Acid blue and acid yellow (dyes)	20-80 oz./ac./ft.	\$8-32/surface ac.

Labels change frequently. Read and follow the label!

Response of common aquatic weeds to herbicides Rotate products

Aquatic group and weed	copper complexes	2, 4-D*	diquat*	endothall*	fluridone	glyphosate
Algae						
planktonic	E	P	P	P	P	P
filamentous	E	P	E	G (hydro)	P	Р
chara	E	P	G	G (hydro)	P	Р
nitella	E	P	G	G (hydro)	P	Р
Tank mixes diquat 1:1 with cutrine + (\$80/surface ac.) Sodium percarbonate (PAK-27) 25#/ac/ft. + copper sulfate (\$52/ac/ft.) Clipper effective on resistant species 12 oz. + surfactant (\$297 per ac.)						
Floating Plants						
bladderwort	P	G (grar	· · ·		Ξ	
duckweeds	P	G (LV)		P	E	
water hyacinth	P	Ε	Ε		P	G
watermeal	P	Р	P-F		F-G	

Response of common aquatic weeds to herbicides

Aquatic group and weed	copper complexes	2, 4-D*	diquat*	endothall*	fluridone	glyphosate
Emergent Plants	1					
American lotus	P	E	P	P	F	G
arrowhead	P	E	G	G		E
cattails	P	G	G	P	F	E
water lily	P	E	P		E	E
sedges & rushes	s P	F	F		P	G
smartweed	P	E	F		F	Ε
water primrose	P	E	F	P	F	E
willows	P	Ε	F		P	Ε
Submersed Plan	ts					
broadleaf						
water milfoil	P		Ε	E	Ε	P
coontail	P	G	E	E	E	Р
elodea	P		E	F	E	Р
eurasian						
water milfoil	P	E	E	E	E	P
naiads	P	F	E	E	E	P
pondweeds	P	P	G	E	E	Р

TREATED WATER USE RESTRICTIONS (NUMBERS OF DAYS).

		Human			Animal		Irrigation	
Common Name	Trade Name	Drinking	Swimming	Fish Consumption	Drinking	Turf	Forage	Food Crops
2,4-D	DMA 4 IVM, Hardball, Navigate, AquaKleen	_ab	0	0	0	21 ^{bc}	21 ^{bc}	21 ^{bc}
Bispyribac-sodium		0	0	0 ^d	_c	_c	_e	_e
Carfentrazone-ethyl		1	0	0	_f	14 ^g	14 ^g	14 ^g
Copper Complexes Copper Sulfate	Algimycin PWF, Captain, Clearigate, Current, Cutrine Plus, Cutrine-Ultra, Harpoon, Komeen, K-Tea, Nautique, Symmetry	0 ^h	0	0	0	0	0	0
Diquat	Harvester, Redwing, Reward, Weedtrine	1-3	0	0	1	1-3	5	5
Endothall	Aquathol K, Aquathol Super K, Hydrothol 191, Hydrothol Granular	7-25 ⁱ	0	0	7-25	0	7-25	7-25
Flumioxazin		0	0	0 ^d	0	0.5-5 ^j	0.5-5 ^j	5
Fluridone	Avast, Sonar A.S. Sonar One, Sonar PR, Sonar Q, Sonar SRP,	0	0	0	0	30	30	30
Glyphosate	Avocet, Aquapro, Rodeo, Shore-Klear, Shore-Klear Plus, Touchdown Pro	0	0	0	0	0	0	0
Imazamox	Clearcast	_k	0	0	0	_k	_k	_k
Imazapyr	Aquapier, Gullwing, Habitat	2	0	0	0	120 ¹	120 ¹	120 ¹
Penoxsulam	Galleon	0	0	0	0	_ ^m	_n	_0
Sodium Carbonate Peroxyhydrate	Pak 27, Phycomycin SCP	0	0	0	0	0	0	0
Triclopyr	Navitrol, Navitrol DPF, Renovate3, Renovate OTF	_p	0	0	0	-9	120	120
Acid Blue #9 & Yellow #23 Dyes	Aquashade, Enviro-Blue	0	0	0	0	0	0	0

Things to recall if you got a nap!

Questions?

Panelists: Brian Rees Cody Miller

Charlie Lee clee@ksu.edu Office 785-532-5734 Cell 785-565-1867

Water quality impacts of livestock operations and grazing management

Aquatic plant management in ponds

Tuesday, June 16

